

North Coast Environmental Health

Services

P.O. Box 1490, Coffs Harbour NSW 2450 Phone: (02) 6652 2915 Fax: (02) 6651 5034 Mobile: 0428 303 720 Email: brett.carlyle@ncehs.net.au

Date: 25 May 2008

Bonville Caravan Park 1251 Pacific Highway BONVILLE NSW 2441

Dear Neil,

On-site Wastewater Disposal Report Bonville Caravan Park, Bonville

In accordance with your instructions, we have undertaken site and soil investigations at the abovementioned property for the preparation of an on-site wastewater disposal report.

Please find enclosed three copies of this report.

I thank you for your business and look forward to working with you again in the future.

Should you require further information or clarification with respects to this report, please do not hesitate to contact me on 6652 2915 or 0419 481 781.

Regards,

www.ncehs.net.au

Brett Carlyle Principal Consultant

> On-site Sewage Management Approval to Operate, Wastewater Reuse, Inspections, Strategies Food Premises Inspections, Auditing, Safety Programs, HACCP BASIX Certification, Development Application Services

> > Environmental Management and Auditing

Water Sampling Programs

North Coast Environmental Health

P.O. Box 1490, Coffs Harbour NSW 2450 Phone: (02) 6652 2915 Fax: (02) 6651 5034 Mobile: 0428 303 720 Email: brett.carlyle@ncehs.net.au

On-site Wastewater Disposal Report Bonville Caravan Park, Bonville

Executive Summary

Following a request from our client, site and soil assessments have been undertaken at Bonville Caravan Park, Bonville for a proposed increase in the size and number of occupants of the existing Caravan Park.

A number of site inspections have been undertaken which revealed minor limitations for all parameters. Due to the extent of landscaping and beautifications works being undertaken and the high level treatment of effluent, we have proposed a reduction in the buffer distances to boundaries in areas clear of the watercourse and drainage channels.

Alternatively, the soil analysis revealed moderate to major limitations for on-site wastewater disposal, being pH, cation exchange capacity (CEC) and phosphorus sorption. These limitations do not preclude the installation of an on-site sewage management system; however they shall require site preparations and soil amendments to ameliorate these concerns.

Sufficient area is available for effluent disposal for the proposed increase in the number of sites and occupants. Four means of effluent disposal have been proposed, with the water and nutrient balances requiring minimum area requirements ranging from $4,761m^2$ to $9,523m^2$.

To enable the dual reticulation of effluent for toilet flushing, washing machine, and outdoor garden use, the recycled water must be treated to a tertiary level by means of an aerated wastewater treatment system (AWTS), dual membrane filtration, chlorination and UV disinfection. The remainder of effluent shall be evenly distributed into a shallow, pressured, sub-surface irrigation system.

Due to the significant reduction in the hydraulic loading for the dual reticulation, an effluent disposal area 4,761m2 is required, with a minimum of 2,300m of sub-surface trenching or 600m of evapotranspiration-absorption (ETA) trenching.

A validation and on-going verification processes are required due to the potential for disease transmission with the dual reticulation system. An information package is required for all persons residing within the caravan park, with warning signs and colour coded pipework required to differentiate between the recycled water and the primary water supplies.

On-site Sewage Management Approval to Operate, Wastewater Reuse, Inspections, Strategies

Food Premises Inspections, Auditing, Safety Programs, HACCP

BASIX Certification, Development Application Services

Environmental Management and Auditing

Since amending the layout of the caravan park with the introduction of the 40m buffer to the eastern boundary for bushfire protection, an additional 1,800m² effluent disposal has available, which provides sufficient area throughout the park for effluent disposal.

Effluent may also be treated to a secondary level, by means of an AWTS, sand filter, or an equivalent, with the water and nutrient balances calculating a minimum effluent disposal area of 9,532m².

As identified in the water and nutrient balances, a minimum of 4,600m of sub-surface drip irrigation is required to adequately dispose of effluent. The length of the sub-surface irrigation system was calculated based on trench specifications of 300mm wide and 300mm deep in accordance with Appendix 4.5C of AS1547:2000.

Effluent may also be disposed of via an ETA system with a minimum of 1,150m of trenching required. The area requirements of the ETA system were calculated in accordance with Appendix 4.5A3, with trench specifications of 1500mm wide and 450mm deep. Spacing of the ETA beds are 2m from sidewall to sidewall with this area extensively vegetated to encourage transpiration.

Table of Contents

1. Introduction	1
2. Climata	I
Gilliale Site and Soil Evaluation	2
Photo 1 Ponyillo Evoluation	2
Table 1 Site Evaluation (Bonville Caravan Bark, Bonville)	3
Table 7. Sile Evaluation (Bonville Caravan Park, Bonville)	
5 Wastowator Quantity and Quality	4
Table 2 Mastewater Allowance per Fixture	5
6 Source and Proposed Lise	5
7 Human Health Disk Assessment	0
7. Turnan Healun Risk Assessment	0
Table 1 Micro-organisms of Concern in Paw Sewage	0
7.2 Chemical Quality	0
7.2 Chemical Quality	/
7.4 Corrective Action	/
8 Environmental Risk Assessment	U
8.1 Microhial Quality	U
8.2 Chemical Quality	0
8.3 Environmental Preventive Measures	0
9 Framework Elements Applied to a Dual Reticulation System	0
Table 5 Potential Hazardous Events Qualitative Risk Estimation	O
Diagram 1 Dual Reticulation Processes Flow Chart	11
Table 6 Critical Control Points and Operational Criteria	12
10 Validation of Treatment Processes	13
Table 7 Validation Requirements for Microbial Health Risks	13
11 Water Balance Calculations	14
12 Proposed Systems	19
12.1 Tertiary Treatment of Effluent with Dual Reticulation and Sub-surface	
Irrigation	19
12.2 Tertiary Treatment of Effluent with Dual Reticulation and ETA System	20
12.3 Secondary Treated Effluent with Sub-Surface Irrigation System	20
12.4 Secondary Treated Effluent with ETA System	. 21
Table 8. Suitable Nutrient & Water Scavenging Plant Species	. 22
Appendix A	. 23
Laboratory Analysis of Soil Sample for Bonville Caravan Park. Bonville	23
Appendix B	. 25
Comparative Water Consumption Figures and Graph	25
Appendix C	. 28
Bonville Caravan Park Site Plan	. 28

1. Introduction

Bonville Caravan Park is located on the 1251 Pacific Highway, Bonville with the expansion taking place adjacent to Bonville Station Road, Bonville. The property is located within the Coffs Harbour City Council (CHCC) Local Government Area (LGA), and is not serviced by a reticulated sewerage system or water supply.

The site is predominantly cleared of vegetation, and gently sloping downwards towards the watercourse and dams which bisect the property from west to east.

Currently, the Caravan Park has approval for 60 sites contained within the 2ha (20,000m²) property. Upon acquisition of the adjoining properties, there will be approximately 4.86ha (48,562m²) of land available for expansion, in which 92 sites are proposed, consisting of 81 permanent sites and 11 temporary sites.

A commercial sized AWTS is presently used for on-site wastewater treatment, and effluent disposed of via spray irrigation on vacant land to the rear of the existing site. This AWTS may be utilised upon the expansion Caravan Park for the treatment of effluent for the temporary sites, however would not produce effluent of sufficient quality for residential dual reticulation.

2. References Used

The following references were used in the preparation of this wastewater disposal report:

- Department of Local Government, Environmental Protection Authority, NSW Health, Department of Land & Water Conservation, and the Department of Urban Affairs and Planning, 1998. *"Environment & Health Protection Guidelines; On-site Sewage Management for Single Households."* Department of Local Government
- Bureau of Meteorology (BOM), "Climate Average for Coffs Harbour MO Weather Station." http://www.bom.gov.au/climate/averages/tables/cw_059040.shtml
- CSIRO, 2005. "Water Sensitive Urban Design Engineering Procedures; Stormwater"
 - CSIRO Publishing, Collingwood, Victoria
- Environment Protection and Heritage Council, Natural Resource Management Ministerial Council, & Australian Health Ministers' Conference, 2006. "National Guidelines for Water Recycling: Managing Health and Environmental Risks." Environment Protection and Heritage Council, the Natural Resource
 - Management Ministerial Council & Australian Health Ministers' Conference.
- NSW Government, Department of Water and Energy, 2007. "Interim Guidelines for Management of Private Recycled Water Schemes." NSW Government, Department of Water and Energy
- Saunders M, 2004. "On-site Sewage Management Training Course Wastewater Characteristics." Centre for Environmental Training
- Standards Australia, 1994. "Australian Standard (AS) 1547:1994; Disposal Systems for Effluent from Domestic Premises." Standards Australia Publishing, Homebush, New South Wales.

- Standards Australia, 2000. *"Australian/New Zealand Standard (AS/NZS)* 1547:2000; On-site Domestic Wastewater Management." Standards Australia Publishing, Strathfield, New South Wales.
- White S, 1998. "Wise Water Management A Demand Management Manual for Water Utilities, Water Services Proceedings of Australia Research Report."

3. Climate

As there are no climate averages for Bonville provided by the Bureau of Meteorology (BOM), figures for the water balance (mean monthly rainfall and daily pan evaporation) were derived from the Coffs Harbour BOM weather station (059040). Whilst limited climate averages are available for Pine Creek Forestry, the figures from the Coffs Harbour weather station allow for a more conservative on-site wastewater disposal design

4. Site and Soil Evaluation

The site investigation revealed minor limitations for all parameters. Considering effluent is being treated to such a high quality (tertiary level) for the purposes of residential dual reticulation, it is proposed that buffer distances be reduced to 1m to boundaries to irrigate the landscaped areas and new plantings. Irrigation within the landscapes areas will consist of sub-surface pressure compensated drip irrigation line in 150mm deep trenching or covered by a minimum of 100mm of mulch.

A watercourse bisects the site west to east, and 2 dams are also situated on-site, requiring the irrigation area to be a minimum of 40m from the watercourse as required by Council's On-site Sewage Management Strategy.

The soil analysis revealed major limitations in the soil's cation exchange capacity (CEC), and moderate limitations for the pH and the phosphorus sorption. These limitations do not preclude the installation on an on-site sewage management system; however it is recommended that organic matter (i.e., mulch, soil, etc.) be applied to the effluent disposal areas to ameliorate these concerns.

Soil investigations revealed loam soils to a depth of 200mm, overlying clay loam soils to depths greater than 1m. Soil was collected for laboratory analysis at a depth of 600mm using a 90mm auger.

An indicative permeability (K_{sat}) of 0.12 – 0.5 metres per day (m/d) has been recommended in AS 1547:2000 for weakly structured clay loams. The recommended design irrigation rate (DIR) for irrigation systems for category 4 soils is 25 millimetres per week (mm/w), whilst the design loading rate (DLR) for evapotranspiration-absorption (ETA) beds is 8mm/d.

Considering effluent is to be treated to a tertiary level, the DLR for the ETA water balance has been increased to 20mm/d, which is consistent with the DLR for trenches and beds as indicated in Note 5 of Table 4.2A1 of AS1547:2000.

For the purposes of preparing water and nutrient balances in accordance with AS1547:1994, the long term acceptance rate (LTAR) has been calculated at 20mm/d with a DIR of 40mm/w.

Photo 1. Bonville Excavated Soil Profile

 Table 1.
 Site Evaluation (Bonville Caravan Park, Bonville)

Site Feature	Minor Limitation		Moderate Limitation		Major Limitation	
Flood Potential	Disposal area above 1:20 year flood contour	~			Disposal area below 1:20 year flood contour	
	Vents, openings and electrical components above 1:100 year flood contour	~			Vents, openings and electrical components below 1:100 year flood contour	
Exposure	High wind and sun exposure	~			Low sun and wind exposure	
Slope (%)	0-10	\checkmark	10-20		>20	
Landform	Hill crest, convex side, slope and plains	~	Concave side, slopes and foot slopes		Drainage plains and incised channels	
Run-on	None - low	✓	Moderate		High - Diversion not practical	
Erosion potential	No signs of erosion potential present	~			Signs of erosion, mass movement and slope failure present	

Site Feature	Minor Limitation		Moderate Limitation	Major Limitation	
Site Drainage	No visible signs of surface dampness	✓		Visible signs of surface dampness	
Fill	No fill	~	Fill present		
Buffer distance	Buffer distances comply	~		Buffer distances do not comply	~
Land area	Area is available	✓		Area is not available	
Rocks and rock outcrops	<10%	\checkmark	10-20%	>20%	

Site Plan Continued (Bonville Caravan Park)

Table 2. Soil Evaluation (Bonville Caravan Park, Bonville)

Site Feature	Relevant Systems	Minor Limitation		Moderate Limitation		Major Limitation	
Depth to bedrock or bardpan (m)	Surface irrigation Subsurface irrigation	>1.0	\checkmark	0.5 - 1.0		<0.5	
naropan (m)	Absorption system	>1.5	✓	1.0 - 1.5		<1.0	
Depth to seasonal watertable (m)	Surface irrigation Subsurface irrigation	>1.0	~	0.5 - 1.0		<0.5	
	Absorption system	>1.5	\checkmark	1.0 - 1.5		<1.0	
pH (CaCl)	All land application systems	>6.0		4.5 - 6.0	~	>4.5	
Soil permeability category	Surface irrigation Subsurface irrigation	2b, 3 & 4	\checkmark	2a & 5		1 & 6	
	Absorption system	3 and 4	✓			1, 2, 5 & 6	
Coarse Fragments (%)	All land application systems	0 - 20	~	20 - 40		> 40	
Electrical conductivity	All land application systems	>4	~	4-8		>8	
Cation exchange capacity	Surface irrigation Subsurface irrigation	>15		5-15		<5	~
Phosphorus sorption	All land application systems	>6000		2000-6000	✓	<2000	
Modified emersion aggregate test	All land application systems	Class 1	~	Class 2		Class 3	

5. Wastewater Quantity and Quality

The hydraulic load was calculated based on the typical domestic wastewater flow design allowances presented in Appendix 4.2D of AS1547:2000, additional water reduction measures by means of dual reticulation and on water consumption figures from Caravan Parks of similar size and with a similar distribution of permanent to temporary sites.

The hydraulic load for the permanent sites has been calculated based on 1.5 persons per bedroom residing in each of the 2-bedroom residences. All permanent residences will have full water-reduction facilities (i.e., 6/3 litre water closets, shower-flow restrictors, front-loading washing machines and flow/pressure control valves on water-use outlets) and dual reticulation, whereby tertiary treated effluent shall be reused for flushing of toilets, washing machine use and outdoor garden irrigation.

With bore water being the primary water supply for the park, the loading for the water balance was calculated based on 110L/person/day, however a reduction in this flow allowance was calculated for the dual reticulation.

A number of studies have been undertaken to estimate the total wastewater flow allowance per person and per fixture. Typical water usage figures for households with ordinary fittings on a reticulated water supply are listed below, sourced from White (1998), the Environment & Health Protection Guidelines (2001), Saunders (2004), and the CSIRO (2005).

As shown in table 3, an average of 29% of the total wastewater stream is generated from toilet flushing, whilst an additional 22.3% is generated from laundry usage. Thus a reduction of 51.3% of the total wastewater flow allowance per person specified in AS 1547:2000 is achieved. Conservatively, this reduces the hydraulic loading from 110L/person/day to 55L/person/day.

Therefore, the total quantity of wastewater generated is 13,365 L/day, based on a maximum of 243 persons residing within the 81 permanent residences. This being a significant reduction from the daily flow allowance of 26,730 L/day based on a loading of 110 L/person/day.

Fixture	White L/house/day (% Indoor Use)	E & HPG L/house/day (% of Total)	Saunders L/house/day (% of Total)	CSIRO L/person/day (% of Total)
Shower	164 (28)			
Bath	30 (6)			
Basin	27 (4)			
Total bathroom	221 (36)	65-85	228 (38)	26 (35)
Toilet	186 (30)	15-35	192 (32)	19 (25)
Laundry	134 (24)		138 (23)	15 (20)
Kitchen	44 (8)		42 (7)	5 (7)
Total Indoor	586 (100%)	100%	600 (100%)	65 (100%)

Table 3.Wastewater Allowance per Fixture

Water consumption within the temporary sites has been calculated based on 65L/person/day, with a maximum occupancy of 5 persons per site. With a maximum of 55 persons accommodating the 11 temporary sites, a daily flow allowance of 3,575L per day has been calculated.

Combining the hydraulic loading from the permanent and temporary sites, the total wastewater flow allowance for the Caravan Park has been calculated at 16,940 L/day.

To permit the reuse of effluent by dual reticulation, it is recommended that effluent is treated to a tertiary level by means of an aerated wastewater treatment system (AWTS), sand filter or an equivalent, with ultraviolet (UV) disinfection.

6. Source and Proposed Use

The source of effluent for the proposed dual reticulation scheme is treated sewage. The Caravan Park is unsewered, and sewage collected on-site from the permanent sites, amenity blocks, community centre, etc., is collected and treated on-site via an ATWS with dual membrane filtration and UV disinfection.

Proposed uses for the tertiary treated effluent include toilet flushing and for washing machine use in permanent sites and amenity blocks, garden use, and irrigation of parks and gardens.

7. Human Health Risk Assessment

7.1 Microbial Quality

Microbial hazards for human health include enteric bacteria, viruses and protozoa. As identified in the *National Guidelines for Water Recycling* (2007), the following micro-organisms of concern are found in raw sewage.

Table 4.Micro-organisms of Concern in Raw Sewage

Pathogen	Examples	Illness
Bacteria	Salmonella	Gastroenteritis, reactive arthritis
	Campylobacter	Gastroenteritis, Guillain–Barré syndrome
	Pathogenic Escherichia coli	Gastroenteritis, haemolytic uraemic syndrome
	Shigella	Dysentery
	Yersinia	Gastroenteritis, septicaemia
	Vibrio cholerae	Cholera
	Atypical Mycobacteria	Respiratory illness (hypersensitivity pneumonitis)
	<i>Legionella</i> spp	Respiratory illness (pneumonia, Pontiac fever)
	Staphylococcus aureus	Skin, eye, ear infections, septicaemia
	Pseudomonas aeruginosa	Skin, eye, ear infections
	Helicobacter pylori	Peptic ulcers
Viruses	Enterovirus	Gastroenteritis, respiratory illness, CNS disorders
	Adenovirus	Gastroenteritis, respiratory illness, eye infections
	Rotavirus	Gastroenteritis
	Norovirus	Gastroenteritis
	Hepatitis A	Infectious hepatitis

Pathogen	Examples	Illness
	Calicivirus	Gastroenteritis
	Astrovirus	Gastroenteritis
	Coronavirus	Gastroenteritis
Protozoa	Cryptosporidium	Gastroenteritis
	Giardia	Gastroenteritis
	Naegleria fowleri	Amoebic meningitis
	Entamoeba histolytica	Amoebic dysentery
Helminths	Taenia (T. saginata)	Tapeworm (beef measles)
	Ascaris	Roundworm
	Trichuris	Whipworm

Source: Environment Protection and Heritage Council, Natural Resource Management Ministerial Council, & Australian Health Ministers' Conference (2006).

7.2 Chemical Quality

As the source of the sewage is from within the Caravan Park, and is not subject to trade wastes, the chemical quality did not represent a significant health risk.

7.3 *Preventive Measures*

Preventative measures to minimise the potential for disease transmission include:

- primary treatment the physical treatment process, retention of sewage for solid matter to settle;
- secondary treatment removes dissolved and suspended organic material by biological treatment and sedimentation; biodegradable organics, volatile organics, some nitrogen and phosphorus removed;
- tertiary treatment polishing of effluent via membrane filtration, chlorination and UV disinfection;
- backflow prevention devices and cross-connection control on all premises and amenity blocks;
- colour coded pipework and outdoor taps and signage;
- continuous online monitoring of turbidity and free chlorine residual;
- to ensure the effectiveness of disinfection;
- Monitoring requirements in relation to dual reticulation include:
 - a. standard AWTS requirements:
 - i. biochemical oxygen demand (BOD) ≤20 mg/L;
 - ii. total suspended solids (TSS) ≤30 mg/L;
 - iii. a thermotolerant coliform count not exceeding 30 cfu/100 ml with no sample exceeding 100 cfu/100 ml; and
 - iv. a TKN of no more than 20 mg/L.
 - b. turbidity of filtered effluent (continuous) ≤2 NTU 95% of the time; maximum turbidity 5 NTU;
 - c. disinfection (continuous) free chlorine residual >2 mg/L; detention >90 mg/min/L
 - d. weekly sampling and analysis of effluent for e.coli
 - e. on-site auditing of controls (education, backflow prevention, etc).
- an education program for all occupants and plumbers.

Prominent signage incorporating symbols indicating that the water is not suitable for drinking ('Recycled Water - Do Not Drink') shall be provided wherever the tertiary treated effluent is used, i.e., fixed to the colour coded pipework and taps provided for garden usage within the permanent caravan sites. The warning signage provided shall be designed with reference to AS 1319 (*Safety Signs for the Occupational Environment* 2004) and AS 2416 (*Design and Application of Water Safety Signs* 2002).

7.4 Corrective Action

In relation to public health and the subsequent water quality monitoring, the corrective responses depend on the exceedence. As a minimum, it involves investigation of plant performance records to confirm normal operation and additional testing to both confirm the exceedence and ensure the source has been identified and ameliorated.

An *e.coli* coliform count ≤10 cfu/100mL shall require investigation of:

- the contact time for the chlorination unit to ensure a minimum residual of 2mg/L is maintained;
- membrane filtration and monitoring system to ensure the turbidity of filtered effluent is ≤2 NTU;
- UV disinfection system to ensure it is free from biofilms, resuspension and regrowth.

An *e.coli* coliform count greater than 10 cfu/100mL shall require the dual reticulation system to be immediately stopped, and supply replaced with the primary water supply.

For the treatment system, corrective actions include the following:

- Non-compliance with critical limits results in flow to dual reticulation system being stopped and replaced by the primary water supply. That is, flow stopped if:
 - i. turbidity limits (0.5 NTU average, 2 NTU maximum) not met for 60 minutes;
 - ii. minimum chlorine contact time (90 mg/min/L not achieved for more than 60 minutes)
- If a cross-connection is detected, flow to individual property stopped at the property boundary.

8. Environmental Risk Assessment

8.1 Microbial Quality

Microbial quality of the recycled water was not considered an environmental issue given the high levels of treatment required to minimise risks to human health for the dual reticulation.

8.2 Chemical Quality

The preliminary risk assessment identified groundwater, surface water, aquatic biota, landscape and garden plants, turf and lawns as potential environmental hazards.

A comprehensive Site and Soil Assessment has been undertaken as identified in Tables 1 & 2, in accordance with AS1547:2000 and the Environment & Health Protection Guidelines.

8.3 Environmental Preventive Measures

Water and nutrient balances have been used to calculate the minimum area requirements for the effluent disposal area. As shown in the water balance calculations, phosphorus was the critical factor as its minimum area requirement of $4,761m^2$ was the largest of the three balances assuming a concentration of 10mg/L in the tertiary treated effluent.

Buffer distances to environmentally sensitive areas have been maintained in accordance with CHCC's On-site Sewage Management Strategy.

An education guide is to be provided to all occupants providing information on the benefits of dual reticulation, and the impacts of deliberate or inadvertent misuse of recycled water. The dual reticulation education guide is designed to ensure all persons within the Caravan Park are well-informed of the recommended usage of the recycled water, and on the operation and maintenance requirements of the treatment system and recycled water. The following are examples of questions addressed to improve its image.

- Is recycled water safe to drink?
- Is recycled water safe for my garden?
- Can I fill a swimming pool with recycled water?
- What kind of testing is done on the treated water?
- Has the recycled water you're delivering ever been contaminated?
- Where does the water come from?
- How much water do you treat?
- Where does the recycled water go?
- What are the benefits of water recycling?
- How much did it cost to build the water recycling scheme?
- How much does the water recycling scheme cost to operate?
- What organisations support the project?
- How do I learn more about your company and water recycling?
- Can I be shown the treatment system?

9. Framework Elements Applied to a Dual Reticulation System

The following table outlines the qualitative risk assessment for potential hazardous events which may jeopardise public and environmental health within the dual reticulation scheme. Hazards italicised were deemed to be critical control points for which monitoring and preventative measures have been established.

Table 5. Potential Hazardous Events Qualitative Risk Estimation

Hazard	Likelihood	Impact	Risk
Treatment systems			
Chemical kill of AWTS micro-organisms	Possible	Catastrophic	Very High
Chemical dosing failures	Likely	Catastrophic	Very High

Hazard	Likelihood	Impact	Risk
Disinfection malfunctions	Possible	Catastrophic	Very High
Equipment malfunctions	Possible	Catastrophic	Very High
Failure of alarms and monitoring equipment	Likely	Moderate	High
Formation of disinfection by-products	Unlikely	Insignificant	Low
Inadequate backup for key processes	Unlikely	Insignificant	Low
Inadequate equipment or unit processes	Likely	Moderate	High
Inadequate filtration and backwash recycling	Likely	Major	Very High
Inadequate mixing of treatment chemicals	Likely	Catastrophic	Very High
Poor reliability of processes	Unlikely	Moderate	Medium
Power failures	Possible	Moderate	Medium
Sabotage and natural disasters	Rare	Moderate	Low
Significant flow variations	Possible	Minor	Medium
Use of unapproved treatment chemicals	Rare	Minor	Low
Distribution systems, application and receiving en	vironments		
Biofilms, resuspension and regrowth	Likely	Catastrophic	Very High
Build-up of sediments and slimes	Likely	Minor	Medium
Change in biodiversity from increased nutrients applied in recycled water	Rare	Minor	Low
Deliberate or inadvertent misuse of recycled water	Certain	Moderate	High
Eutrophication of receiving waters	Unlikely	Moderate	Medium
Failure to identify recycled water systems	Possible	Minor	Medium
(below and above-ground components)			
Failure to maintain buffer zones and other	Rare	Minor	Low
access controls (eg fencing and signage)			
Flow variability, inadequate pressures	Rare	Moderate	Low
Formation of disinfection by-products	Unlikely	Minor	Low
Groundwater intrusion (salinity)	Rare	Moderate	Low
Human or livestock access, absence of	Unlikely	Insignificant	Low
exclusion areas			
Inadequate repair and maintenance, inadequate system flushing and reservoir cleaning	Possible	Catastrophic	Very High
Lack of separation between recycled water and drinking water systems	Unlikely	Major	High
Inappropriate materials and coatings or material failure	Rare	Minor	Low
Pipe bursts or leaks	Unlikely	Minor	Low
Poor cross-connection control and backflow	Possible	Maior	High
protection (eg outdoor water users)		,	J
Raised watertable, salinisation, soil structure	Rare	Minor	Low
decline			
Sabotage and natural disasters	Rare	Moderate	Low
Soil, groundwater or surface water	Possible	Minor	Low
contamination by recycled water			
Toxicity to plants, terrestrial or aquatic biota	Rare	Minor	Low
Waterlogging of plants	Possible	Minor	Medium
Users of recycled water			·
Cross-connections to, and lack of backflow	Possible	Catastrophic	Very High
protection (eg drinking water)			
Inadequate education and information about	Likely	Major	Very High
permitted uses	-		
Leaching of metals from piping and fittings	Rare	Minor	Low
Over watering	Possible	Minor	Medium
Potential for unauthorised use	Possible	Minor	Medium
Use of inappropriate plumbing and construction	Rare	Minor	Low
materials			

Diagram 1. Dual Reticulation Processes Flow Chart

Hazard	Potential critical limits	Monitoring	Corrective action
Chemical kill of AWTS micro-organisms	A reduction of 5 log bacteria, 6.5 log viruses, and 5 log protozoa.	Weekly e.coli laboratory analysis of effluent.	AWTS Service Agent to identify source and take action (eg. add actizyme to reinstate micro- organisms, stop dual reticulation if necessary)
	Information to be provided to all occupants within the Caravan Park of the operation and maintenance requirements of the Dual Reticulation Scheme	Signed acknowledgement from permanent and temporary occupants for receipt of Dual Reticulation Information Pack	Information to be provided immediately
Chemical dosing failures	Total chlorine residual >2 mg/L; detention >90 mg/min/L	Continuous online monitoring and alarms with automatic feedback to chlorine dosing	AWTS Service Agent to increase contact time, ensure free chlorine residual, and stop dual reticulation if necessary
Disinfection malfunctions	Total chlorine residual >2 mg/L; detention >90 mg/min/L	Continuous online monitoring and alarms with automatic feedback to chlorine dosing	AWTS Service Agent to increase contact time, ensure free chlorine residual, and stop dual reticulation if necessary
	Effluent turbidity ≤2 NTU 95% of the time; maximum turbidity 5 NTU	Continuous turbidity online monitoring	AWTS Service Agent to clean / replace membrane filtration, ensure minimum retention time, and stop dual reticulation if necessary
Equipment malfunctions	Zero equipment malfunctions	Continuous online monitoring,	AWTS Service Agent to determine the source of the malfunction and repair. Dual reticulation to be stopped in necessary
Inadequate filtration and backwash recycling	Effluent turbidity <2 NTU 95% of the time; maximum turbidity 5 NTU	Continuous turbidity online monitoring	AWTS Service Agent to clean / replace membrane filtration, ensure minimum retention time, and stop dual reticulation if necessary
Inadequate mixing of treatment chemicals	Total chlorine residual >2 mg/L; detention >90 mg/min/L	Continuous online monitoring and alarms with automatic feedback to chlorine dosing	AWTS Service Agent to increase contact time, ensure free chlorine residual, and stop dual reticulation if necessary
Biofilms, resuspension and regrowth	Quarterly servicing and cleaning of AWTS, chlorination unit, and UV system	Council and Caravan Park Owners / Management to ensure 3 Monthly servicing and cleaning.	Remove all biofilms / growth from the glass of the UV system to ensure transparency
Inadequate repair and maintenance, inadequate system flushing and reservoir cleaning	Quarterly servicing and cleaning of AWTS, chlorination unit, and UV system	CHCC and Caravan Park Owners / Management to ensure 3 Monthly servicing and cleaning.	Alternate AWTS service agent to be contacted where 3 monthly servicing not be undertaken.
Cross-connections to, and lack of backflow protection (eg drinking water)	Zero cross-connections and backflow prevention provided at property boundaries	Owners and Council to receive backflow prevention deceive certification from licenced plumber connecting the dual reticulation supply to premises	Licenced plumber to install cold water supply and backflow prevention devices from the dual reticulation system.
Inadequate education and information about permitted uses	Information to be provided to all occupants within the Caravan Park of the operation and maintenance requirements of the Dual Reticulation Scheme	Signed acknowledgement from permanent and temporary occupant for receipt of Dual Reticulation Information Pack	Information to be provided immediately

Table 6. C

Critical Control Points and Operational Criteria

10. Validation of Treatment Processes

A commercial Aqua Nova AWTS is being utilised for the secondary treatment of effluent, following which, membrane filtration, chlorination and UV disinfection shall occur. Considering Everhard Industries have previously undertaken validation testing to ensure their commercial Aqua Novas treat effluent to a secondary level, a reduced validation process is proposed.

Upon commissioning of the AWTS, membrane, chlorination and UV disinfection systems and following certification from the service agent that the system is operating satisfactorily, effluent sampling shall commence for the validation process.

In accordance with the NSW Guidelines for Management of Private Recycled Water Schemes (2007), two *e.coli*, one coliphages and *clostridia* samples shall be collected weekly from each of the four sample points identified in Table 7.

A total of 8 *e.coli* samples and 4 coliphages and *clostridia* samples shall be collected weekly, over a four week period to enable calculations of averages and standard deviations. Effluent is to be collected for analysis during high, medium and low flow rates to determine the efficiency of the treatment system.

Process step to be validated	Validation monitoring	Associated monitoring (items to be routinely monitored)
Secondary treatment system	Inlet and outlet microbial indicator concentrations (monitoring shall include <i>E. coli</i> , coliphage and clostridia)	Flow rate through the systemSludge blanket depth
Membrane plant	Inlet and outlet microbial indicator concentrations (monitoring shall include <i>E. coli</i> , coliphage and clostridia)	 Turbidity upstream and downstream of system Head loss across system Particle counts on outlet
Chlorination plant	Inlet and outlet microbial indicator concentrations (monitoring shall include <i>E. coli</i> , coliphage and clostridia)	 Turbidity upstream of disinfection system Free chlorine, temperature and pH at downstream monitoring point, certainly well after the point at which the immediate chlorine demand has been satisfied, and ideally at a point representing a significant proportion of the total required contact time Flow rate to enable calculation of Ct
Ultraviolet plant	Establishment of operational envelope with respect to factors such as lamp age, lamp power, flow, UV transmissivity and turbidity. Inlet and outlet microbial indicator concentrations (monitoring shall include <i>E. coli</i> , coliphage and clostridia)	 Turbidity upstream of disinfection system UV transmissivity UV intensity Flow rate to enable calculation of retention times Ballast functionality, lamp power and lamp status

Table 7.Validation Requirements for Microbial Health Risks

Process step to be validated	Validation monitoring	Associated monitoring (items to be routinely monitored)
Cross-connection control	Check every drinking water property connection by turning off the drinking water supply at each property in series, leaving the recycled supply turned on; then check all drinking and recycled water outlets to confirm that only the recycled water outlets on the property are live and that no drinking water outlets are live	
Accidental ingestion control	Confirm that labelling, colouring, threads and fittings are in use by inspecting all connected properties and their outlets	 Inspection of labels and fittings

11. Water Balance Calculations

Water, nitrogen (N) and phosphorus (P) balances have been calculated to determine the size of the irrigation area and the effluent disposal area. In the calculations of the N and P balances, concentrations of 25 mg/L of N, and 10 mg/L of P were used for tertiary treated effluent.

In accordance with AS 1547:2000 the length of the ETA system has been calculated based on trench specifications of 1500mm wide and 450mm deep, whilst the length of the sub-surface irrigation has been calculated based specifications of 150mm x 150mm.

For tertiary treated effluent associated with the dual reticulation and irrigation system, the minimum disposal area requirements based on the water and nutrient balances varied significantly, with $3,710m^2$ required for N, $4,761m^2$ for P, and $2,965m^2$ for the hydraulic loading. Therefore the phosphorus loading is the limiting factor as its area requirement of $4,761m^2$ is the largest of the three balances.

For secondary treated effluent with the significantly increased hydraulic loading, the water and nutrient balances identified minimum area requirements of $5,929m^2$ for the hydraulic loading, $7,420m^2$ for N, and $9,523m^2$ for P. Therefore the phosphorus loading is the limiting factor as its area requirement of $9,523m^2$ is the largest of the three balances.

Bo	onville Ca	ravan Pa	rk (Dual F	Reticulatio	on and Irri	gation Sy	stem) Wa	ter Balan	ce - AS 15	47
		0.4			0.2					
	Number of	Sites (Incl	uding Res	idence) =	92					
		Number of	f Tompora	nt Sites =	11					
Nur	nher of Oc	cunants in	Permane	nt Sites =	243	Persons				
Nur	nber of Oc	cupants in	Tempora	rv Sites =	55	Persons				
	Da	ily Flow in	Permane	nt Sites =	13,365	L/day				
	Da	ily Flow in	n Tempora	ry Sites =	3,575	L/day				
			Runo	off Coeff =	0.2	percenta	ge runoff			
			Crop Fa	ctor (Cf) =	0.75	crop tran	spiration r	ate		
			DIR (AS154	47:1994) =	40.0	mm/wee	k			
			Dai	ly Flow =	16,940	L/day				
		DIR / D	DRL (AS154	47:2000) =	25.0	mm/wee	k			
		Efflu	ent dispos	al area =	2,965	m ²				
Tranah di	monsions	(mm)		Width -	200		Depth -	200		
Trench al	mensions	(mm)		vviatn =	300		Deptn =	300		
Le	ength of tre	ench requi	red (AS154	47:2000) =	2,259	metres				
Ni	trogen ba	lance (sec	ondary tre	atment) =	3,710	m ² efflue	nt disposa	l area		
Phos	phorus ba	lance (seco	ondary tre	atment) =	4,761	m ² efflue	nt disposa	l area		
Table G1	- Size of A	rea for Ea	ch Month							
1			2	3	4	5	6	7	8	9
Month	Days /	Daily pan	Monthly	Evapo-	Rainfall	Retained	LTAR /	Disposal	Effluent	Size of
	month	evap	pan evap	transpiratio	/ month	rainfall	month	rate/month	applied	area
	N	F 4	-	F 1		D-		(2) (5) (0)	per month	(0) //7)
	N	Et	E0	Et	P	Rr		(3)-(5)+(6)	-	(8)/(7)
		mm	mm	mm	mm	mm	mm	mm	L	mz
Jan	31	6.5	201.5	151	180.3	144.2	1240	1246.9	525140	421.2
Feb	28	5.9	165.2	124	215.3	172.2	1120	1071.7	474320	442.6
Mar	31	5.2	161.2	121	245.2	196.2	1240	1164.7	525140	450.9
Apr	30	4.1	123.0	92	179.7	143.8	1200	1148.5	508200	442.5
May	31	2.9	89.9	67	167.1	133.7	1240	1173.7	525140	447.4
Jun	30	2.5	75.0	56	112.9	90.3	1200	1165.9	508200	435.9
Jul	31	2.7	83.7	63	74.7	59.8	1240	1243.0	525140	422.5
Aug	31	3.6	111.6	84	78.1	62.5	1240	1261.2	525140	416.4
Sep	30	4.8	144.0	108	60	48.0	1200	1260.0	508200	403.3
Oct	31	5.6	173.6	130	88	70.4	1240	1299.8	525140	404.0
Nov	30	6.2	186.0	140	129.8	103.8	1200	1235.7	508200	411.3
Dec	31	6.5 Tatal Ea	201.5	151 Tetel D	146	116.8	1240	1274.3	525140	412.1
		TOTALEO	1/10.2	Total P	10//.1					
Table G2	- Depth of	Stored Eff	luent							
4	2	2	4	E	E		7		8	0
month	∠ first trial	application	4 Disposal	(3)-(4)	Increase	Denth	Increase	Maximum	0 Reset if	J enoth
month	area	rate	rate	(3) (4)	depth of	effluent	depth	depth of	evap	of
	(m2)	(8)/(2)	per month		stored	for	effluent	effluent	deficit	trench
			(above)'		effluent	month	+(6)	(X)	exceeded	(m)
					(5)/0.3			0.0		
	m2	mm	mm	mm	mm	mm	mm	mm		
Dec	2964.5							0.0		457.9
Jan		177	1246.9	-1070	-3566	0	-3566	-3566	0	468.0
Feb		160	1071.7	-912	-3039	0	-3039	-3039	0	491.8
Mar		177	1164.7	-988	-3292	0	-3292	-3292	0	501.0
Apr		171	1148.5	-977	-3257	0	-3257	-3257	0	491.7
May		177	1173.7	-997	-3322	0	-3322	-3322	0	497.1
Jun		1/1	1165.9	-995	-3315	0	-3315	-3315	0	484.3
Aug		1//	1243.0	-1066	-3553	0	-3553	-3553	0	469.4
Sen		171	1201.2	-1004	-3014	0	-3014	-3014	0	402.0
Oct		177	1299.8	-1123	-3742	0	-3742	-3742	0	448.9
Nov		171	1235.7	-1064	-3547	0	-3547	-3547	0	457.0
Dec		177	1274.3	-1097	-3657	0	-3657	-3657	0	457.9

	Bonville	Caravan	Park (Dua	al Reticula	ation and E	ETA Syste	m) Water	Balance	- AS 1547	
	Number of	Sites (Incl	uding Res	idence) =	92					
		Number of	f Permane	nt Sites =	81					
		Number of	f Tempora	ry Sites =	11					
Nun	nber of Oc	cupants in	Permane	nt Sites =	243	Persons				
Nur	nber of Oc	cupants in	Tempora	ry Sites =	55	Persons				
	Da	ily Flow in	Permane	nt Sites =	13,365	L/day				
	Da	ily Flow in	Tempora	ry Sites =	3,575	L/day				
			Runo	ff Coeff =	0.2	percenta	ge runoff			
			Crop Fac	ctor (Cf) =	0.75	crop tran	spiration r	ate		
				LTAR =	20	mm/day				
			Dai	ly Flow =	16,940	L/day				
			DI	R / DRL =	20	mm/day				
		Efflu	ent dispos	al area =	1,928	m ²				
	Maxim	num depth	of stored	effluent =	0	mm dept	h			
Trench di	mensions	(mm)		Width =	1500		Depth =	450		
Le	ength of tre	ench requi	red (AS154	17:2000) =	565	metres				
N.:					2 740					
NI	trogen ba	lance (seco	ondary tre	atment) =	3,710	m ² efflue	nt disposa	l area		
Phos	phorus bal	lance (seco	ondary tre	atment) =	4,761	m ² efflue	nt disposa	l area		
Table G1	- Size of A	rea for Fa	ch Month							
Tuble GI	0120 0111									
1			2	3	4	5	6	7	8	9
Month	Davs /	Daily pan	Monthly	Evapo-	Rainfall	Retained	LTAR /	Disposal	Effluent	Size of
	month	evap	pan evap	transpiratio	/ month	rainfall	month	rate/month	applied	area
	month	onap	panorap	cranopiratio		- Canada		i acontronan	per month	aroa
	N	Ft	Fo	Ft	P	Rr		(3)-(5)+(6)	per menu	(8)/(7)
		mm	mm	mm	mm	mm	mm	mm	1	m2
									-	1112
Jan	31	6.5	201.5	151	180.3	144.2	620	626.9	525140	837.7
Feb	28	5.9	165.2	124	215.3	172.2	560	511.7	474320	927.0
Mar	31	5.2	161.2	121	245.2	196.2	620	544 7	525140	964.0
Apr	30	4.1	123.0	92	179.7	143.8	600	548.5	508200	926.5
Mav	31	2.9	89.9	67	167.1	133.7	620	553.7	525140	948.3
Jun	30	2.5	75.0	56	112.9	90.3	600	565.9	508200	898.0
Jul	31	2.7	83.7	63	74.7	59.8	620	623.0	525140	842.9
Aug	31	3.6	111.6	84	78.1	62.5	620	641.2	525140	819.0
Sen	30	4.8	144.0	108	60	48.0	600	660.0	508200	770.0
Oct	31	5.6	173.6	130	88	70.4	620	679.8	525140	772.5
Nov	30	6.2	186.0	140	129.8	103.8	600	635.7	508200	799.5
Dec	31	6.5	201.5	151	146	116.8	620	654.3	525140	802.6
000		Total Fo	1716.2	Total P	1677 1	110.0	020	004.0	525140	002.0
		Total Lo	1110.2	Totarr						
Table G2	- Depth of	Stored Eff	luent							
	-	-		_	-		_		-	
1	2	3	4	5	6		7		8	9
month	first trial	application	Disposal	(3)-(4)	Increase	Depth	Increase	Maximum	Reset if	Length
	area	rate	rate		depth of	effluent	depth	depth of	evap	of
	(m2)	(8)/(2)	per month		stored	for	effluent	effluent	deficit	trench
			(above)'		effluent	month	+(6)	(X)	exceeded	(m)
					(5)/0.3			0.0		
	m2	mm	mm	mm	mm	mm	mm	mm		
Dec	1928							0.0		334.4
Jan	1020	272	626.9	-355	-1182	0	-1182	-1182	0	349.0
Feb		246	511.7	-266	-885	n n	-885	-885	õ	386.3
Mar		272	544.7	-272	-908	0	-908	-908	0	401 7
Apr		264	5/8.5	-285	-950	0	-950	-950	0	386.1
May		204	540.0	-203	-038	0	-038	-038	0	395.1
lun		212	565.0	-201	-000	0	-000	-550	0	37/ 2
Jul		204	622.0	-302	-1000	0	-1000	-1000	0	361.2
Δυσ		212	641.0	-301	100	0	1220	100	0	3/1.2
Son		212	660.0	-202	-1229	0	-1229	-1229	0	320.0
Oct		204	670.0	-330	1021	0	1020	1021	0	321.0
Nov		212	635.7	-407	-1330	0	-1330	-1330	0	321.3
Dec		204	654.2	-312	-1240	0	-1240	-1240	0	337.1
Dec		L 212	004.0	-302	-1213	· · ·	-1213	-12/J	· · ·	004.4

Bon	ville Cara	van Park	(Seconda	ary Treatr	nent and l	rrigation \$	System) V	Vater Bala	ance - AS	<u>1547</u>
		Citere (Incel			02					
	Number of	Sites (Incl	luding Kes f Permane	Idence) =	9Z 81					
		Number of	f Tempora	ry Sites =	11					
Nur	nber of Oc	cupants in	Permane	nt Sites =	243	Persons				
Nu	nber of Oc	cupants ir	n Tempora	ry Sites =	55	Persons				
	Da	ily Flow in	Permane	nt Sites =	13,365	L/day				
	Da	ily Flow ir	n Tempora	ry Sites =	3,575	L/day				
			Dura	# C #	0.2					
			Runo	off Coeff =	0.2	percenta	ge runoff	ata		
				(CI) =	40.0	crop tran	spiration i	ate		
			Dirk (AST)4 Dai	11.1334 = 10	33,880	L/day	n.			
		DIR / D	ORL (AS154	47:2000) =	25.0	mm/wee	k			
		Efflu	ent dispos	al area =	5,929	m ²				
Trench di	mensions	(mm)		Width =	300		Depth =	300		
Le	ength of tre	ench requi	red (AS154	47:2000) =	4,517	metres				
N	trogen ba	lance (sec	ondary tre	atment) =	7,420	m ² efflue	nt disposa	l area		
Phos	phorus ba	lance (sec	ondary tre	atment) =	9,523	m ² efflue	nt disposa	l area		
Table G1	- Size of A	rea for Ea	ch Month							
1			2	3	4	5	6	7	8	9
Month	Days /	Daily pan	Monthly	Evapo-	Rainfall	Retained	LTAR /	Disposal	Effluent	Size of
	month	evap	pan evap	transpiratio	/ month	rainfall	month	rate/month	applied	area
	N	Et.	Fo	Et.	D	Dr		(3) (5)+(6)	per month	(8)/(7)
	IN	mm	mm	mm	mm	mm	mm	mm		
Jan	31	6.5	201.5	151	180.3	144.2	1240	1246.9	1050280	842.3
Feb	28	5.9	165.2	124	215.3	172.2	1120	1071.7	948640	885.2
Mar	31	5.2	161.2	121	245.2	196.2	1240	1164.7	1050280	901.7
Apr	30	4.1	123.0	92	1/9./	143.8	1200	1148.5	1016400	885.0
lun	30	2.9	89.9 75.0	56	107.1	90.3	1240	11/3./	1050280	871.8
Jul	31	2.5	83.7	63	74.7	59.8	1200	1243.0	1050280	844.9
Aug	31	3.6	111.6	84	78.1	62.5	1240	1261.2	1050280	832.7
Sep	30	4.8	144.0	108	60	48.0	1200	1260.0	1016400	806.7
Oct	31	5.6	173.6	130	88	70.4	1240	1299.8	1050280	808.0
Nov	30	6.2	186.0	140	129.8	103.8	1200	1235.7	1016400	822.6
Dec	31	0.5 Total Eo	201.5	151 Total D	146	116.8	1240	12/4.3	1050280	824.2
		TOTALEO	1/10.2	TULATE	1077.1					
Table G2	- Depth of	Stored Eff	luent							
1	2	3	4	5	6	D ::	7	1.4	8	9
month	first trial	application	Disposal	(3)-(4)	Increase	Depth	Increase	Maximum	Reset if	Length
	(m2)	(8)/(2)	ner month		stored	for	effluent	effluent	deficit	trench
	(112)	(3)(2)	(above)		effluent	month	+(6)	(X)	exceeded	(m)
			()		(5)/0.3			0.0		1.1.1
	m2	mm	mm	mm	mm	mm	mm	mm		
Dec	5929							0.0		915.8
Jan		177	1246.9	-1070	-3566	0	-3566	-3566	0	935.9
Feb		160	1071.7	-912	-3039	0	-3039	-3039	0	983.6
Mar		177	1164.7	-988	-3292	0	-3292	-3292	0	1001.9
Apr		171	1148.5	-977	-3257	0	-3257	-3257	0	983.3
May		177	11/3.7	-997	-3322	0	-3322	-3322	0	994.2
Jul		1/1	12/13 0	-995	-3315	0	-3315	-3315	0	938 8 909.0
Aug		177	1243.0	-1084	-3614	0	-3614	-3614	0	925.3
Sep		171	1260.0	-1089	-3629	Ő	-3629	-3629	0	896.3
Oct		177	1299.8	-1123	-3742	0	-3742	-3742	0	897.8
Nov		171	1235.7	-1064	-3547	0	-3547	-3547	0	914.0
Dec		177	1274.3	-1097	-3657	0	-3657	-3657	0	915.8

Bo	onville Ca	aravan Pa	rk (Secor	ndary Tre	atment an	d ETA Sys	stem) Wat	er Balano	e - AS 15	<u>47</u>
		Cite a /la al	udina Des	:do	02					
- 1	vumber or	Sites (Inci Number of	Dormano	nt Sitos -	92					
		Number of	Tompora	ni Sites -	11					
Nur	nher of Oc	cunants in	Permane	nt Sitos =	243	Persons				
Nur	nber of Oc	cupants in	Tempora	rv Sites =	55	Persons				
	Da	ilv Flow in	Permane	nt Sites =	13,365	I /day				
	Da	ily Flow in	Tempora	rv Sites =	3.575	I/day				
		.,		,	0,010					
			Duno	ff Cooff =	0.2	norconta	no runoff			
			Crop Fa	rtor (Cf) =	0.75	cron tran	spiration r	ato		
			cropra		20	mm/day	зрпаноп п	ate		
			Dai	LIAK =	22 990	l /day				
					20	mm/day				
				NT DRL -	20	min/uay				
		Efflu	ont dience	al aroa –	1 0 2 8	m ²				
	Mavin	um donth	of stored	offluont -	1,520	mm dont	h			
	Maxin	ium uepui	of storeu (ennuent –	•	min uept				
Trench di	monsions	(mm)		Width =	1500		Denth =	450		
Trench u	inchatona	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		widdi -	1500		Deptil -	450		
ه ا	angth of tre	anch requi	rod (A \$15/	17-1994) =	989	motros				
	angul of tre	anch roqui	rod (A \$154	(7.2000) =	1 1 2 9	motros				
	ingui or uv	nen regu		11.2000	1,125	meaco				
Ni	trogen ba	lance (seco	ondary tre	atment) =	7,420	m ² efflue	nt disposa	area		
Phoe	nhorue ha	anco leoc	ondary tro	atmont) =	9 523	m ² offluo	nt disposa	aroa		
1 1105		ance pect			0,025	in chiue	uispusa	arou		
T 1 •										
Table G1	- Size of A	rea for Ea	ch Month							
			_	_		-		_	_	
1		D ''	2	3	4	5	6	1	8	9
Month	Days /	Daily pan	Monthly	Evapo-	Rainfall	Retained	LIAR /	Disposal	Effluent	Size of
	month	evap	pan evap	transpiratio	/ month	rainfall	month	rate/month	applied	area
		E .						(0) (5) (0)	per month	(0) ((7)
	N	Et	E0	Et	Р	Rr		(3)-(5)+(6)		(8)/(7)
		mm	mm	mm	mm	mm	mm	mm	L	mz
lan.	24	6.5	004.5	454	400.2	444.0	000	0.000	1050000	4075 4
Jan	31	0.5 6.0	201.5	151	160.3	144.2	620	626.9	1050280	10/5.4
Mar	20	5.9	100.2	124	215.3	1/2.2	000	511.7	1050290	1004.0
Apr	20	0.Z	101.2	02	243.Z	130.2	620	044.1 EAO E	1010200	1920.0
May	21	4.1	90.0	92	167.1	143.0	620	562.7	1010400	1000.1
lup	30	2.5	75.0	56	112.0	00.3	600	565.0	1016400	1796.0
Jul	31	2.5	83.7	63	74.7	59.8	620	623.0	1050280	1685.8
Διια	31	3.6	111.6	84	78.1	62.5	620	6/1.2	1050200	1637.9
Son	30	4.8	144.0	108	60	48.0	600	660.0	1016400	1540.0
Oct	31	5.6	173.6	130	88	70.4	620	679.8	1050280	1546.0
Nov	30	6.2	186.0	1/0	129.8	103.8	600	635.7	1016400	1599.0
Dec	31	6.5	201.5	151	146	116.8	620	654.3	1050280	1605.1
Dec	31	Total Fo	1716.2	Total P	1677 1	110.0	020	034.5	1030200	1003.1
		TOTALEO	1110.2	Totari	101111					
Table G2	- Depth of	Stored Eff	luent							
1	2	3	4	5	6		7		8	9
month	first trial	application	Disposal	(3)-(4)	Increase	Depth	Increase	Maximum	Reset if	Length
	area	rate	rate		depth of	effluent	depth	depth of	evap	of
	(m2)	(8)/(2)	per month		stored	for	effluent	effluent	deficit	trench
			(above)		etfluent	month	+(6)	(X)	exceeded	(m)
					(5)/0.3			0.0		
	- 0									
	m2	mm	mm	mm	mm	mm	mm	mm		
Dec	1020							0.0		662.0
Jan	1920	EAE	606.0	80	.974	0	.974	0.0	0	600.0
Fob		040 //02	611 7	-02	-214	0	-214	-214	0	770 5
Mar		432	511.7	-20	-00-	0	-00-	-00-	0	002 2
Apr		545 507	544.1 540 F	0	71	0	71	71	0	770 4
May		521	540.5	-21	-/ 1	0	-/ 1	-/ 1	0	700.2
lun		545 607	1.666	-9 20	-30	0	-30	-30	0	7/2 2
Jul		521	623.0	-33	-123	0	-129	-123	0	702.4
Aug		545 EAE	6/1.2	-70	-201	0	-201	-201	0	682.5
Sen		540	660.0	-50	-322	0	-322	-322	0	6/1.7
Oct		545	679.8	-135	-440	0	-44.5	-44.5	0	643.7
Nov		527	635.7	-108	-362	0	-362	-362	0	666.2
Dee		545	654.3	-110	-365	0	-365	-365	ő	668.8

12. Proposed Systems

12.1 Tertiary Treatment of Effluent with Dual Reticulation and Sub-surface Irrigation

Sufficient area is available for effluent disposal to facilitate the proposed redevelopment of the Caravan Park. Effluent collected from within the Caravan Park shall be treated to a secondary level by means of a commercial AWTS, following which; tertiary treatment is achieved by dual membrane filtration, chlorination and UV disinfection.

Due to the extent of landscaping being undertaken, it is recommended to dispose of effluent via a sub-surface irrigation system rather than ETA beds. The irrigation system will be used to irrigate the vegetated and landscaped areas around the perimeter of the Park, and within the designated effluent disposal area located in the north-east corner of the property.

As identified in the water and nutrient balances, a minimum of 2,300 metres of subsurface trenching is to be installed within the 4,761m² irrigation area. The trenches are to be excavated to an accurately level depth of 300mm, and installed in accordance with Appendix 4.5C of AS1547:2000. Spacing of the sub-surface trenching is 500mm from sidewall to sidewall with this area extensively vegetated to encourage transpiration.

Due to the high quality of effluent being produced, it is recommended that buffer distances be reduced to 1m from the park boundaries and 1m to the boundaries of the caravan sites. A 40m buffer to watercourses has been maintained as specified in CHCC's On-site Sewage Management Strategy. Where effluent disposal areas are located within the 3m buffer between the property boundary and site boundaries, 3 lengths of trenching are to be installed at 500mm centres.

A reserve area is to be provided should the treatment system fail to treat effluent to the minimum requirements for dual reticulation.

The dual reticulation system shall provide tertiary treated effluent via a colour coded low pressure reticulation system to each of the permanent sites, the community centre and the amenity blocks. Effluent provided for outdoor garden usage, shall be connected to a colour coded tap, to provide differentiation from the primary water supply, and be signed accordingly. The tap handle is to be removable to ensure that children and persons unknown do not inadvertently consume the tertiary treated effluent.

12.2 Tertiary Treatment of Effluent with Dual Reticulation and ETA System

As an alternative to the sub-surface irrigation system with dual reticulation, an ETA system may also be utilised for effluent disposal. In accordance with Appendix 4.5A3 of AS1547:2000, an ETA system 600m in length may be installed, based on trench specifications of 1500mm wide and 450mm deep.

Spacing of the ETA beds is 2m from sidewall to sidewall with this area extensively vegetated to encourage transpiration. Layout of the ETA beds is indicated in the site plans in Appendix C.

A reserve area is to be provided should the treatment system fail to treat effluent to the minimum requirements for dual reticulation.

The dual reticulation system shall provide tertiary treated effluent via a colour coded low pressure reticulation system to each of the permanent sites, the community centre and the amenity blocks. Effluent provided for outdoor garden usage, shall be connected to a colour coded tap, to provide differentiation from the primary water supply, and be signed accordingly. The tap handle is to be removable to ensure that children and persons unknown do not inadvertently consume the tertiary treated effluent.

12.3 Secondary Treated Effluent with Sub-Surface Irrigation System

Since amending the layout of the Caravan Park and providing a 40m buffer from the permanent sites and to the eastern boundary, an additional 1,800m² area has become available for effluent disposal. Accordingly, effluent treated to a secondary level via an AWTS, sand filter, or an equivalent, may be disposed of entirely within a sub-surface irrigation system.

A minimum of 4,600 lineal metres of pressure compensated drip irrigation is to be installed within a 9,523m² irrigation area. The trenches are to be excavated to an accurately level depth of 300mm and 300 wide, and installed in accordance with Appendix 4.5C of AS1547:2000. Spacing of the sub-surface trenching is 500mm from sidewall to sidewall with this area extensively vegetated to encourage transpiration.

Due to the high quality of effluent being produced, it is recommended that buffer distances be reduced to 1m from the park boundaries and 1m to the boundaries of the caravan sites. A 40m buffer to watercourses has been maintained as specified in CHCC's On-site Sewage Management Strategy. Where effluent disposal areas are located within the 3m buffer between the property boundary and site boundaries, 3 lengths of trenching are to be installed at 500mm centres.

12.4 Secondary Treated Effluent with ETA System

Following the secondary treatment of effluent, effluent may also be disposed of via an ETA system 1,150m in length. In accordance with Appendix 4.5A3 of AS1547:2000, the ETA system may be installed within the 9,523m² effluent disposal area based on trench specifications of 1500mm wide and 450mm deep.

Spacing of the ETA beds is 2m from sidewall to sidewall with this area extensively vegetated to encourage transpiration. Layout of the ETA beds is indicated in the site plans in Appendix C.

Due to the high quality of effluent being produced, it is recommended that buffer distances be reduced to 1m from the park boundaries and 1m to the boundaries of the caravan sites. A 40m buffer to watercourses has been maintained as specified in CHCC's On-site Sewage Management Strategy. Where effluent disposal areas are located within the 3m buffer between the property boundary and site boundaries, 3 lengths of trenching are to be installed at 500mm centres.

Excavation work is only to be done when the weather is fine and the soil is not wet or damp.

Excavation work must not damage the soil by:

- Smearing, where the soil surface is smooth, filling cracks and pores.
- Compacting, where soil porosity is reduced.
- Puddling, where washed clay settles on the base of the trench to form a relatively impermeable layer.

The irrigation and effluent disposal areas are to be vegetated with plants that have a high evapotranspiration capacity and should be selected on the basis of local experience, or failing this from the list compiled in Table 8. Vegetation is to be planted prior to the application of effluent to the disposal areas.

Grasses/Reeds/Groundcovers	Common Name
Baumea acuta	Sedge
B. articulata	Sedge
B. juncea	Sedge
B. nuda	Sedge
B. rubignosa	Sedge
B. teretifolia	Sedge
Brachyscome diversifolia	Native Daisy
Carex appressa.	Tussock Sedge
Cyprus spp.	Sedge
Hibbertia scandens	Guinea Golden Vine
Juncus articulatus	Jointed rush
J. polyanthemos	Sedge
J. prismatocarpus	Sedge
J. usitatus	Common rush
Lomandra longifolia	Lomandra
Phragmites australis	Bull Rushes
Schoenoplectus spp.	Sedge
Typha latifolia	Bulrush
Shrubs under 2m	Common Name
Angiozanthus flavidus	Kangaroo Paw
Austromyrtus inopholia	Thread Barbed Myrtle
Backea spp Dwarf	Dwarf Backea
Banksia aemula	Banksia
Blandfordia grandifoia	Christmas Bell
B. nobilis	Christmas Bell
Bornia parvifloria	Swamp Boronia
Callistemon citrinus	Austraflora Firebrand
C. pachyphyllus	Bottlebrush
C. viminalis Little John,	Little John, Captain Cook and Rose
Opal varieties	Opal varieties
Crinum campanulatum	Crinum Lily
Dianella caerulea	Blue Flax Lily
Doodia aspera	Rasp Fern
Hibiscus diversifolius	Swamp hibiscus
Hymenosporum flavuum	Native Frangipani
Leptospermum flavescens	Tea Tree
L. juniperinum	Tea Tree
L. laevigatum	Coast Tea Tree
L. semibaccatum	Tea Tree
Melaleuca decussata	Cross Leaved Honey Myrtle
Svzvajum australe	Aussie compact Lilly Pilly

Table 8. Suitable Nutrient & Water Scavenging Plant Species

Should you require further information or clarification with respects to this report, please do not hesitate to contact me on 66522 915 or 0419 481 781

Regards,

Brett Carlyle Principal Consultant North Coast Environmental Health Services Appendix A

Laboratory Analysis of Soil Sample for

Bonville Caravan Park, Bonville

Sydney Environmental & Soil Laboratory

On-site Wastewater Disposal Report

Quality

Sydney

Laboratory

Specialists in Soil Chemistry, Agronomy and Contamination Assessments

Environmental and Soil

Tests are performed under a quality system certified as complying with ISO 9001: 2000. Results and conclusions assume that sampling is representative. This document shall not be reproduced except in full.

AS/NZS ISO 9001: 2000 QEC 21650

North Coast Environmental Health Services CLIENT: PO Box 1490 COFFS HARBOUR NSW 2450 Attn: Brett Carlyle

- PROJECT: Name: On-Site Wastewater Disposal Location: Bonville Caravan Park SESL Quote N°: Client Job N°: Order N°: Date Received: 27/03/2008
- SAMPLE: Batch N°: 6057 Sample Nº: 1 Name: Bonville Caravan Park Test Type: SS-25EFF - NO PSA. [EFF, mEAT, Text, WBD, St]

TEST	RESULT	COMMENTS
pH in water 1:5	6.2	Slight Acidity
pH in CaCl ₂ 1:5	5.2	Strong Acidity
EC mS/cm 1:5	.03	Very Low Salinity

TEST	SC	DLUBLE		EXCHANGEABL	E	
Unit	meq%	Comment	meq%	% of ECEC	Col	mment
Sodium Potassium			.14 .13	6.70 6.20	Ele	evated htly Low
Calcium Magnesium Aluminium			1.35 .44	64.30 21.00	Acc	eptable eptable
		FOEC	2 10		Ve	
		Ca/Mg	3.10		N	ormal
Phosphate Reter	ntion Index % 45.	.60 Medium	PRI mgP/kg	2360.7	PRI kg/ha	4992.9 to 150mm
PHYSICAL CH	ARACTERISTICS	8				
Fexture: Clay Lo	bam		Field Densit	ty g/mL: 1.41		
Structure: Weak	Crumb					
Emerson Stability	Class: H20 2	Low SAR 2	High	SAR 2		
Particle Si > 2mi	m Gravel	<u>N</u>				
2 - 0.2 m	m Eine Sand	id .				
0.2 - 0.02 m	m Silt					
< 0.002 m	m Clay					
Recommendat	tions					
For the purpose phosphorus is in disposal system The soil aggreg the application The slight acidi If any further as	e of onsite effluent medium, and at de n. gates show some of high ionic stren ity and very low sa ssistance is requir	t disposal report, this s epth of 150 mm the soi dispersion and suscep igth solution (ie effluen alinity make this soil ide ed please contact me a	oil shows slight I can absorb a d tibility to erosion t). eal for effluent a at the office on	acidity and very loc considerable amount n and tunneling, wit application. 9980 6554.	w salt content nt, increasing h the stability	t. The soils ability to absorb the longevity of the effluent remaining unchanged with
Explanation of the Mi pH, EC, Soluble Catic Chiorde: Vogel (1981) 30-4 Black (1983) Tes (1983) Method 43-1 to Checked by: Mi	ethods: ons, Nitrate: Bradley et al). Aluminium: Method 35c ture: Charman & Murphy 43-6. urray Fraser	(1983), Exchangeable Cations, O APHA (1992), Phosphate: Mei (1991), Emerson's Aggregate Te	ECEC: Method 15A1 R ECEC: Method 15A1 R Haymant & H sst: Charman & Murphy	tayment & Higginson (1992) igginson (1992). Wax Block y (1991). Particle Size Analy Consultant:	Density: Method rsis: Modified Black	Date of Rep 17/04/2008

Sydney Environmental & Soil Laboratory Pty Ltd ABN 70 106 810 708 16 Chilvers Road Thornleigh NSW 2120 Australia Address mail to: PO Box 357 Pennant Hills NSW 1715 Tel: 02 9980 6554 Fax: 02 9484 2427 Em: info@sesl.com.au Web: www.sesl.com.au

Total No Pages: 1 of 1

On-site Wastewater Disposal Report

Appendix B

Comparative Water Consumption Figures and Graph

	Lime Trees Tourist	Colonial Surfside	Bonville Caravan Park	Bonville Caravan Park	Lime Trees Tourist	Colonial Surfside Caravan	Bonville Caravan Park	Bonville Caravan Park
	Park Consumption	Caravan Park	Consumption Per Day	Consumption Per Day	Park Water Usage	Park Water Usage Per	Consumption Per Site	Usage Per Site with
Reading Date	Per Day	Consumption Per Day	AS1547:2000	with Dual Reticulation	Per Site (107 Sites)	Site (122 Sites)	AS1547:2000	Dual Reticulation
14/12/2007	19,358.49		30,305.00	16,940.00	180.92		329.40	184.13
30/08/2007	30,720.00		30,305.00	16,940.00	287.10		329.40	184.13
22/05/2007	19,111.11		30,305.00	16,940.00	178.61		329.40	184.13
20/03/2007	22,262.63		30,305.00	16,940.00	208.06		329.40	184.13
11/12/2006	26,696.08		30,305.00	16,940.00	249.50		329.40	184.13
31/08/2006	23,988.10		30,305.00	16,940.00	224.19		329.40	184.13
8/06/2006	28,125.00		30,305.00	16,940.00	262.85		329.40	184.13
20/03/2000	20,442.11		20,305.00	16,940.00	200.01		329.40	104.13
16/09/2005	26 107 53	30.915.66	30,305.00	16,940.00	201.11	253 /1	329.40	104.13
15/06/2005	25 544 44	31,076,09	30,305.00	16,940.00	238 73	254.72	329.40	184.13
17/03/2005	29 391 75	32 739 58	30,305.00	16 940 00	274.69	268.36	329.40	184.13
10/12/2004	27 670 59	31 736 26	30,305,00	16 940 00	258.60	260.33	329.40	184.13
16/09/2004	24.000.00	31.821.78	30,305,00	16,940,00	224.30	260.83	329.40	184.13
8/09/2004	25,237.11	38,023.81	30,305.00	16,940.00	235.86	311.67	329.40	184.13
3/06/2004	25,333.33	36,456.52	30,305.00	16,940.00	236.76	298.82	329.40	184.13
5/03/2004	24,045.98	26,853.93	30,305.00	16,940.00	224.73	220.11	329.40	184.13
9/12/2003	24,178.95	32,642.86	30,305.00	16,940.00	225.97	267.56	329.40	184.13
5/09/2003	21,395.35	37,454.55	30,305.00	16,940.00	199.96	307.00	329.40	184.13
11/06/2003	22,186.05	42,000.00	30,305.00	16,940.00	207.35	344.26	329.40	184.13
17/03/2003	25,514.85	33,130.43	30,305.00	16,940.00	238.46	271.56	329.40	184.13
6/12/2002	27,525.64	29,500.00	30,305.00	16,940.00	257.25	241.80	329.40	184.13
19/09/2002	24,464.65	28,000.00	30,305.00	16,940.00	228.64	229.51	329.40	184.13
12/06/2002	21,709.30	28,321.84	30,305.00	16,940.00	202.89	232.15	329.40	184.13
18/03/2002	23,020.62	33,462.96	30,305.00	16,940.00	215.15	274.29	329.40	184.13
11/12/2001	24,428.57	27,047.62	30,305.00	16,940.00	228.30	221.70	329.40	184.13
11/09/2001	21,088.89	26,561.80	30,305.00	16,940.00	197.09	217.72	329.40	184.13
13/06/2001	22,370.79	23,010.99	30,305.00	16,940.00	209.07	108.61	329.40	184.13
7/12/2001	20,070.71	23,755.01	30,305.00	16,940.00	243.05	194.72	329.40	104.13
1/12/2000	22,017.02	21,110.10	20,205.00	16,940.00	211.37	227.00	329.40	104.13
25/07/2000	17 687 07	29,372.09	30,305.00	16,940.00	215.10	240.75	329.40	104.13
29/02/2000	14 647 06	28,962,26	30,305.00	16,940.00	136.89	237.40	329.40	184.13
6/12/1999	19 474 23	34 894 74	30,305.00	16 940 00	182.00	286.02	329.40	184.13
31/08/1999	17 964 29	28 527 47	30 305 00	16 940 00	167.89	233.83	329.40	184 13
8/06/1999	17.258.43	25.576.09	30,305,00	16,940.00	161.29	209.64	329.40	184.13
11/03/1999	20,540.82	31,726,19	30,305.00	16,940.00	191.97	260.05	329.40	184.13
3/12/1998	18,032.61	27,723.40	30,305.00	16,940.00	168.53	227.24	329.40	184.13
2/09/1998	17,520.83	23,527.47	30,305.00	16,940.00	163.75	192.85	329.40	184.13
29/05/1998	18,075.00	23,329.67	30,305.00	16,940.00	168.93	191.23	329.40	184.13
10/03/1998	22,125.00	23,866.67	30,305.00	16,940.00	206.78	195.63	329.40	184.13
4/12/1997	19,457.45	29,531.25	30,305.00	16,940.00	181.85	242.06	329.40	184.13
1/09/1997	18,644.44	25,839.08	30,305.00	16,940.00	174.25	211.80	329.40	184.13
18/07/1997	55,511.63	23,670.45	30,305.00	16,940.00	518.80	194.02	329.40	184.13
5/06/1997	7,103.45	22,106.38	30,305.00	16,940.00	66.39	181.20	329.40	184.13
10/03/1997	9,400.00	26,382.98	30,305.00	16,940.00	87.85	216.25	329.40	184.13
6/09/1996	19,197.53	23,522.73	30,305.00	16,940.00	1/9.42	192.81	329.40	184.13
1//06/1996	15,829.79	23,285.71	30,305.00	16,940.00	147.94	190.87	329.40	184.13
1/05/1996	10,042.00	10,127.00	20,205.00	16,940.00	100.02	132.19	329.40	104.13
1/02/1996	18 791 67	18 837 21	30,305.00	16,940.00	105.02	170.14	329.40	104.13
15/12/1995	16 159 09	28 122 45	30,305,00	16 940 00	151.02	230 51	329.40	184 13
1/11/1995	18,930,23	20,441,86	30,305,00	16,940,00	176.92	167.56	329.40	184.13
19/09/1995	18,489,80	25.069.77	30,305,00	16,940.00	172.80	205.49	329.40	184.13
1/08/1995	18,147.06	24,102.04	30,305.00	16,940.00	169.60	197.56	329.40	184.13
28/06/1995	15,322.58	23,722.22	30,305.00	16,940.00	143.20	194.44	329.40	184.13
27/04/1995	18,257.14	19,766.67	30,305.00	16,940.00	170.63	162.02	329.40	184.13
23/03/1995	17,137.93	22,142.86	30,305.00	16,940.00	160.17	181.50	329.40	184.13
24/01/1995	17,083.33		30,305.00	16,940.00	159.66		329.40	184.13
19/12/1994	17,129.63		30,305.00	16,940.00	160.09		329.40	184.13
26/10/1994	32,020.41		30,305.00	16,940.00	299.26		329.40	184.13
7/09/1994	34,975.00		30,305.00	16,940.00	326.87		329.40	184.13
29/07/1994	27,681.82		30,305.00	16,940.00	258.71		329.40	184.13
15/06/1994	27,255.32		30,305.00	16,940.00	254.72		329.40	184.13
29/04/1994	27,578.95		30,305.00	16,940.00	257.75		329.40	184.13
22/03/1994	24,020.00		30,305.00	16,940.00	224.49		329.40	104.13
17/10/1000	20,400.09		30,305.00	10,540.00	204.94		323.40	104.13
27/10/1993	22,013.01		30,305.00	16 9/10 00	200.79		329.40	18/ 13
13/09/1993	21 469 39		30,305.00	16 940 00	200.65		329.40	184.13
26/07/1993	22,718,75		30,305,00	16.940.00	212.32		329.40	184.13
24/06/1993	20,781.82		30,305.00	16,940.00	194.22		329.40	184.13
30/04/1993	19,250.00		30,305.00	16,940.00	179.91		329.40	184.13
17/03/1993	21,590.91		30,305.00	16,940.00	201.78		329.40	184.13

Appendix C

Bonville Caravan Park Site Plan Irrigation and Effluent Disposal Areas